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Abstract 

Observing immoral behavior increases one’s dishonesty by social influence and learning processes. The 

neurocomputational mechanisms underlying such moral contagion remain unclear. We tested different 

mechanistic hypotheses to account for moral contagion. We used model-based fMRI and a new cheating game 

in which participants were sequentially placed in honest and dishonest social norm contexts. Participants’ 

cheating behavior increased in the dishonest norm context but was unchanged in the honest. The best model 

to account for behavior indicated that participants’ valuation was dynamically biased by learning that others had 

cheated. At the time of choice, the internalization of social norms was implemented in the lateral prefrontal cortex 

and biased valuations of cheating. During learning, simulation of others’ cheating behavior was encoded in the 

posterior superior temporal sulcus. Together, these findings provide a mechanistic understanding of how 

learning about others’ dishonesty biases individuals’ valuation of cheating but does not alter one’s established 

preferences. 

Significance statement 

Social influence is at the root of human behavior. For example, we tend to follow others' bad moral behavior 

such as cheating. Here, we explore the neuro-computational mechanisms of social influence on cheating 

behavior. We validated a new model capturing both how we learn about others' (dis)honesty and how this bias 

our choice. We show that if we observe dishonest others we tend to be more dishonest ourselves. This 

behavioral change is driven by a bias dynamically changing with our knowledge about the others' cheating 

behavior. Neurally, we found that the lateral prefrontal cortex implements this bias into the decision process 

while the posterior superior temporal sulcus and the temporo-parietal junction encode our learned representation 

of others' cheating.  
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Introduction 

Dishonest behavior, such as cheating, tax evasion and corruption is pervasive in modern societies. 

Dishonest behavior can be modified through the exposure to others’ immoral behavior (1, 2). For example, 

observing others’ dishonest reports increase one’s likelihood to cheat (2). Such influence of others’ behavior on 

our own choices is not limited to dishonesty, but can be observed in domains such as risk-related decision 

making (3–8), and both pro-social and anti-social behavior (9–12). Why and how the observation of others’ 

dishonest behavior may modify our own moral behavior in non-strategic settings remains an enduring puzzle. 

Recent work has implicated specific brain regions in moral decision-making and described the underlying neural 

computations (13–17). Yet, little is known about the neurocomputational mechanisms underlying how social 

influence modifies moral decisions. 

It remains unclear whether social influence shapes our individual beliefs, as behavior reflecting social 

norms compliance is not a perfect reflection of our private beliefs. To date, two mechanisms have been proposed 

to explain how social influence affects one’s choices. The first, called valuation bias, proposes that individuals 

assign value to social information, which then influences one’s personal valuation process. This means that 

simply being exposed to others' choices alters how individuals perceive the value of the options at stake and 

potentially influence one’s own choice (3, 4, 18). The second mechanism, referred to as preference shifting, 

proposes that exposure to others' choices can more fundamentally modify an individual's own preferences to 

align with the choices of others. This mechanism implies a more profound change of private beliefs or personal 

preferences (3–8). One limitation of these two previous accounts of social influence is that they did not consider 

the dynamic aspect of learning. For example, in a new social environment with specific norms (e.g., when one 

arrives in a new company), one usually lacks knowledge about others' behavioral tendencies, including whether 

they lean toward honesty or dishonesty. Consequently, in such new environments, learning through repeated 

observation of others' behavior becomes necessary to mitigate uncertainty about others’ true levels of 

(dis)honesty. Learning social norms in new contexts is particularly important regarding dishonesty because of 

its concealed nature (because this makes accurate observation challenging). Therefore, it is likely that a social 

learning component might modulate either the valuation bias or the preference shifting mechanism, to adjust 

how such mechanisms are weighted as the individual learns about others' honesty levels.  

Here, we tested different theoretical accounts of the mechanisms underlying how others’ behavior 

influences one’s own cheating behavior. We considered four social influence mechanisms, as either a fixed or 

dynamic valuation bias or a fixed or dynamic change in individual preferences (Fig. 1). First, we assessed which 

computational model among these best explained social influence in cheating behavior. Second, we uncovered 

where in the brain different computational signals of social influence are encoded when presented with the 

opportunity to cheat. Importantly, the different accounts noted above predict that different neural mechanisms 

underly social influence on cheating behavior. According to the first two hypotheses (fixed valuation bias and 

fixed preference shifting hypotheses), no behavioral or brain activity changes should occur over time, because 

these hypotheses do not consider that learning about the behavior of others would dynamically affect the 

influence process. In contrast, the dynamic valuation bias and dynamic preference shifting hypotheses do predict 

such changes. One brain region that could support such dynamic changes in social influence is the dorsolateral 

prefrontal cortex (dlPFC) because it represents others’ risk-preferences, and because its functional connectivity 

with the ventral striatum increases with the extent of social influence (8). Moreover, activity in the dlPFC is 

associated with integration of social norms and moral preferences in decision processes (16, 19–21) and 

neuroimaging studies consistently implicate the dlPFC in dishonest choices (22–24). Regions such as the right 

temporo-parietal junction (rTPJ) and the posterior superior temporal sulcus (pSTS) are also good candidates to 

support the dynamic integration of others’ behavior. Indeed, both the rTPJ and pSTS are central in tracking and 

integrating others’ preferences (25), and there is evidence that the rTPJ encodes others’ intentions necessary 

for social choices (26–29).  

We used functional magnetic resonance imaging (fMRI) and a new paradigm based on a cheating game. 

This game comprised two types of trials: (i) Solo trials, in which participants could lie about the outcome of a die 

colzaroll to maximize their earnings, (ii) Predict trials, in which they predicted what another individual, randomly 
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selected from a group of 10, reported in a previous experimental session. The purpose of the Solo trials was to 

assess the extent to which participants were prone to cheating. For the Predict trials, the goal was to expose 

participants to the behavior of others and allow them to learn the preferences of a group. Unbeknownst to the 

participants, the behavior of the group was simulated and controlled so that the participant faced either a 

dishonest or an honest group of players. With this manipulation, we assessed the effect of social influence in 

two different contexts. These two contexts have been shown to lead to different levels of conformity because 

anti-social and dishonest behavior appears to be more contagious than prosocial behavior (11, 30, 31). The 

experiment was divided into three blocks. The first was composed of trials, to allow us to estimate participants’ 

preferences in the absence of social influence. The second and third blocks consisted of interleaved Predict and 

Solo trials. In each of these two blocks, participants’ predictions concerned either an honest or a dishonest group 

of participants. This novel design gradually exposed participants to others’ behavior, allowing us to test the fixed 

versus dynamic accounts of valuation bias and preference shift mechanisms. 

 

Results 

Experimental design 

We scanned 32 participants using fMRI while they played the cheating game, which included two types 

of trials: Solo and Predict (Fig. 2.A). Solo trials required participants to observe a die roll result (‘stimulus’). Then, 

participants were presented with two dice (‘choices’), one presenting the original die roll result and the other 

showing an inaccurate die roll. Each die was associated with a different payoff. Notably, the accurate die always 

offered a lower payoff than the inaccurate one, which presented participants with a moral dilemma between 

honesty and maximization of their earnings. To modulate the difficulty of these dilemmas, the payoffs varied 

across trials. Participants had as much time as they wanted to choose which die roll to report. Once their choice 

was made, the screen froze for 500 ms (‘confirmation’). No visual feedback indicating their choice was provided 

to reinforce the feeling that the decision was made privately (see SI Methods for details).  

The "Predict" trials mirrored the Solo trials but required participants to predict the choice of whether 

another individual would report their own die roll accurately or not in similar circumstances. Participants were 

informed that this individual was randomly chosen from a pool of 10 anonymous individuals that had completed 

the task previously. In reality, this group was computer simulated, which allowed controlled manipulation of their 

cheating behavior. The prediction of the participants was highlighted in red during a jittered ‘confirmation’ stage. 

Finally, at the end of each Predict trial feedback was provided to the participant by highlighting the correct 

response in green. Accurate predictions were rewarded, whereas inaccurate predictions were not (see SI 

Methods for details).  

The experiment comprised three blocks: a Baseline block with 50 Solo trials to discern individual 

preferences in the absence of social influence, and two subsequent blocks each consisting of 50 Solo and 50 

Predict trials interleaved (Fig. 2.B). This sequential arrangement aimed to gradually expose participants to 

others' behavior, to test how learning about the others’ (dis)honesty influenced their own decisions in the Solo 

trials. In these two blocks, one block featured dishonest others (Dishonest Group condition), while the other had 

honest counterparts (Honest Group condition, see SI Methods and Table S.1). The presentation order of the 

latter two blocks was randomized across participants. 

From the initial pool of 32 participants, one was excluded from all analyses due to consistent cheating 

and disbelief regarding whether they were predicting real peoples’ decisions. Additionally, three more 

participants were excluded from the model-based analyses because they always cheated or always were honest 

in the Baseline Solo trials (see SI Methods). 

 

Behavioral effect of social influence 

In the Baseline participants cheated in 55.3 % of the Solo trials. They cheated in 69.6 % of Solo trials in 

the Dishonest Group condition and in 60 % of the Solo trials in the Honest Group condition (Fig. 2.C). To test 

the differences between each condition, we used a mixed-effect logistic regression on whether the participants 

cheated or not in a given trial with the following independent variables: a categorical variable coding for the 
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condition (1: Baseline, 2: Dishonest Group and 3: Honest Group); a binomial variable coding for the order of 

presentation of the Dishonest Group condition (1: first and 0: second); a variable coding for the trial number 

within each block; a variable coding for the difference between the payoff of cheating and honesty; and, a 

variable coding for the absolute difference between the die value of the cheating option and the honest one. We 

also added demographic variables such as the participants’ sex, age and occupation (i.e., student or not). All 

the regressions reported in this paper used the same independent variables except when indicated otherwise. 

Participants were significantly more likely to cheat in the Dishonest Group condition than in any other 

condition (Fig. 2.C, margins contrast Dishonest > Baseline: 0.148 ± 0.037, p < 0.001; margins contrast Dishonest 

> Honest: 0.101 ± 0.027, p = 0.001; see model (1) in Table S2). No significant difference in cheating behavior 

was observed between the Honest Group condition and the Baseline (Margins Honest > Baseline: 0.047 ± 0.025, 

p = 0.170). To ensure that these differences were driven by the groups’ behavior, we tested whether participants 

learned equally well in both conditions. This was indeed the case because participants’ prediction accuracy was 

significantly different from chance level (i.e., 50%) for both groups (Signed rank tests, p < 0.001 for both groups; 

Fig. 2.D). Fig. 2.E shows that, on average, participants’ predictions about others’ cheating frequency converged 

towards the mean cheating behavior in both conditions. Moreover, predictions that others would cheat were 

significantly more frequent for the Dishonest Group condition than the Honest Group condition (Margins 

Dishonest > Honest: 0.540 ± 0.033, p < 0.001; see model (3) in Table S2). However, participants were also 

significantly more accurate when predicting the Dishonest group’s behavior than that of the Honest group 

(Margins Dishonest > Honest: 0.179 ± 0.022, p < 0.001; see model (2) in Table S2).  

 

Computational models of social influence 

Our computational approach to analyze social influence encompassed two components: a social learning 

component and a social influence component. The social learning component accounts for how participants 

predicted others’ cheating behavior and updated their own beliefs about others’ preferences. The social 

influence component reflects how participants cheated (or not), based on their own preferences and based upon 

how they were influenced by what they learned about others’ cheating behavior. To simplify the selection 

process between our candidate models, we used a three-step selection procedure based on a group-level 

random-effect Bayesian model selection (32). We started by defining which utility function, among the fixed 

moral cost and the variable moral cost, best described how participants chose between the honest and the 

dishonest option. Subsequently, we determined the best fitting learning model that explained participants' 

predictions in blocks 2 and 3. Finally, we conducted model selection among the four candidate models that 

represent the different social influence mechanisms. Below, we describe each of these steps in more detail. 

First, we used the participants’ decision to cheat (choose the Dishonest option) in all three blocks. 

Previous work shows that honesty-based choices can be described by two utility functions. A first utility function 

(Fixed cost) assumes that individuals endure a fixed moral cost when they are cheating (33, 34). A second utility 

function (Variable cost) assumes that the cost of being dishonest is dependent on the absolute gains associated 

with it (24) (see Methods SI). We considered extreme cases in which participants always used just one of these 

two utility functions (Fixed cost only or Variable cost only) and others cases in which they used one in some 

blocks and the other in the other blocks (Mixed variants). Results from the model selection showed that the utility 

function with a fixed moral cost of cheating best explained participants’ cheating behavior across all blocks 

(Protected exceedance probability (pEP) = 0.999, Fig. S1.A). 

Next, we evaluated which model best explained participants’ social learning behavior during the Predict 

trials in the Dishonest and Honest Group conditions. We tested various candidate models derived from the 

Bayesian Preference Learning (BPL) model (35). These models initiate with participants holding normally 

distributed priors regarding others' preferences, which allow participants to infer the likelihood of cheating when 

they predict others' choices during the Predict trials. Post-feedback, a prediction error, that compares their 

prediction with the actual behavior, refines the posterior distribution of others' preferences. Within the BPL 

model, we considered three types of priors, each representing distinct learning biases. The first involved 

participants using their own preferences as priors for both conditions, a process termed self-projection (BPL-

Self). The second utilized participants' priors based on their own preferences for the initial group condition and 
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the learned preferences from the preceding group for the subsequent group condition (BPL-Others). This 

showcases the persistence of prior learning. Finally, the third model combined aspects of the previous two types 

of priors. When learning about the second group's behavior, participants combined their own preferences with 

the learned preferences regarding the previous group (BPL-SelfOthers). Furthermore, we investigated whether 

participants inferred others' preferences according to the utility functions previously mentioned. Specifically, 

participants could believe that others' decisions aligned with the utility function used to simulate others' behavior 

(Variable cost of cheating, (24)), or they might consider the utility function they used for their own decisions 

(Fixed cost of cheating) ((33, 34); see Methods SI). We found that the BPL model with self-projection (BPL-Self) 

and the utility function with a fixed moral cost of cheating was the best to explain our participants’ predictions 

(pEP: 0.907, Fig. S1.B). 

Finally, we proceeded to the selection of the model that best explains social influence in our experiment. 

We explored two hypotheses, each delineating social influence in distinct ways: one as a fixed phenomenon, 

independent of participants' learning about others' cheating behavior; and the other as a dynamic and learned 

phenomenon, interconnected with participants' understanding of others' conduct.  

For the fixed hypothesis, we evaluated two models. The first posits that social influence arises from a 

shift in individuals' preferences (Preferences Shift, PS-Fixed) (5, 7, 8, 12). The second suggests that social 

influence results from a bias in the valuation process (Valuation Bias, VB-Fixed) (4, 18). For the dynamic 

hypothesis, we examined versions of these models in which influence correlated with what participants learned 

of others’ cheating tendencies across trials. Thus, in the PS-Dynamic model, preference alteration was 

hypothesized to result from a weighted average between participants' own preferences and the inferred 

preferences of others at a given time (PS-Dynamic model). This weighted average is governed by two distinct 

free parameters, 𝛾𝐴 and 𝛾𝐷, for each parameter of the others’ utility function (𝛾𝐴 for the parameter α and  𝛾𝐷 for 

the parameter δ). They are specific to each group condition, indicating the participants' levels of conformity. For 

the VB-Dynamic model, we considered that the participants' decision model's value is modulated by the 

probability that others would have cheated (or been honest) in the Dishonest Group (Honest Group) condition 

during a particular Solo trial, as calculated by the BPL Self model (VB-Dynamic model). A parameter, 𝛾, adjusts 

the probability and represents the extent of participants' conformity to others' behavior. This parameter was 

individually estimated for each participant in each group condition. 

In total, we tested 4 models (see Fig. 1 for a graphical summary). The Bayesian model selection showed 

that the VB-Dynamic model was the most frequent best fit across our sample (pEP = 0.672; Fig. 3.A and Figure 

S2 for a graphical representation of the model). 

We then explored the estimated parameters of the winning VB-Dynamic model. First, we observed that 

the conformity parameter 𝛾 is significantly higher in the Dishonest Group condition than in the Honest Group 

condition (Two-sided rank sum test, p<0.001; Fig. 3.B). The decision model parameter α is positive and 

significantly different from 0 (mean: 0.192 ± 0.022, p < 0.001, Fig. S2.A) whereas δ is negative and significantly 

different from 0 (mean: -0.684 ± 0.178, p = 0.001, Fig. S2.A). This is in line with the fact that participants’ 

likelihood to cheat increased with the relative earnings of cheating and that this effect was limited by a fixed 

moral cost associated with cheating. Concerning the learning of others’ preferences, we found that the predicted 

probability to cheat of others, estimated by participants, converged towards the average simulated probability to 

cheat of each group (Fig. 3.C).  

Formally, the learned α parameters are significantly higher for the Dishonest Group than the Honest 

Group. Conversely, the learned moral cost δ parameters are significantly lower for the Honest Group than the 

Dishonest Group (mean α, Dishonest group: 0.428, Honest Group: 0.102; mean δ, Dishonest group: -0.089, 

Honest Group: -1.893; Two-sided rank sum tests, p < 0.001 for each parameter; Fig. S2. B-C). This implies that 

participants recognized that members of the Dishonest Group were more likely to cheat than members of the 

Honest Group for a given set of payoffs. The difference observed in prediction accuracy between the two groups 

is not explained by a difference in inverse temperature β. A lower value of this parameter for the Honest Group 

would indicate more randomness in the participants’ predictions (Two-sided rank sum test, p = 0.573; Fig. S2.B). 

However, the variance parameter of the distribution for the learned parameter α is significantly higher for the 

Honest than the Dishonest Group. Conversely, the variance parameter of the distribution for the learned 
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parameter δ is significantly higher for the Dishonest Group than the Honest one (mean var. α, Dishonest group: 

0.378, Honest Group: 0.774; mean var. δ, Dishonest Group: 0.529, Honest Group: 0.359; Two-sided rank sum 

tests, p < 0.001 and p = 0.003, respectively). Furthermore, the difference in variance for the parameter δ is 

significantly lower than the difference for the parameter α (Two-sided rank sum tests, p < 0.001). This finding for 

the model parameters parallels the behavioral results which indicates that participants’ prediction accuracy is 

lower in the Honest Group condition than the Dishonest Group condition.  

Finally, one could argue that participants’ conformity may be explained by their own preferences or by 

the accuracy of their predictions. These alternative hypotheses were in fact ruled out by additional analyses 

showing that 𝛾 is neither correlated with the participants’ own moral cost δ, nor with participants’ mean prediction 

accuracy (Fig. S2. D-E). 

 

Model-based fMRI analysis 

We constructed two GLMs to identify how the brain encodes the 4 computational signals of the VB- 

Dynamic model. The first 3 signals concerned the decision and prediction processes (at the time of choice in 

the Solo trials and the time of prediction in the Predict trials):  (1) The dynamic valuation bias in the Dishonest 

and Honest Group conditions (choices in the Solo trials); (2) the prediction that the others cheated, when 

observing Dishonest and Honest group members (Predict trials), (3) the relative value of chosen and unchosen 

options in Solo trials, regardless of conditions (i.e., all blocks averaged together). The fourth signal concerned 

the prediction error signal at the feedback stage of the Predict trials. Four parametric regressors of no interest 

were also added: participants’ response times, the side of their choice (left or right), their decision to cheat or 

not at the choice stage of the Solo trials and their predictions about others’ behavior during the prediction stage 

of the Predict trials. All the parametric regressors were non-orthogonalized, and could thus compete for variance. 

Finally, we added the participants’ degree of conformity γ for both the Dishonest and Honest Group conditions 

as a second level covariate. 

In the first GLM (GLM 1), we included the first signal (dynamic valuation bias) as well as the participants’ 

uninfluenced relative decision value to cheat as parametric regressors during the choice phase of the Solo trials 

in both the Dishonest and Honest Group conditions (see Methods SI). This GLM revealed a negative relationship 

between left Lateral Prefrontal Cortex (lPFC) activity that corresponded to the dynamic valuation bias signal with 

participants’ conformity parameter 𝛾, for Solo trials in the Dishonest Group condition only (lPFC, x,y,z = -39,27,9; 

Fig. 4.A-B; p<0.05 whole-brain cluster corrected family-wise error (FWE) and Table S3). That is, for negative 

values of 𝛾, that corresponded to anti-conformity, participants’ dynamic valuation bias signal increased more in 

the lPFC at the time of choice. 

In the second GLM (GLM 2), we added the remaining three computational signals: the participants’ 

prediction that the other cheated at the time of the prediction in the Predict trials, their prediction error at the time 

of the feedback in the Predict trials and the relative value of the participants’ choice at the choice stage of the 

Solo trials in every condition (Baseline and Groups; see Methods SI for details). Using this GLM, we found that 

the prediction that the others cheat is encoded in the bilateral posterior Superior Temporal Sulcus and Temporo-

Parietal Junction (pSTS-TPJ, x,y,z = 54,0,-9, -36, -34, 48; see Fig. 4.C and Table S4). Additionally, the relative 

value of the chosen option (𝐷𝑉𝐶ℎ𝑜𝑜𝑠𝑒𝑛 − 𝐷𝑉𝑈𝑛𝑐ℎ𝑜𝑜𝑠𝑒𝑛 ) in the Solo trials was negatively correlated with the BOLD 

signal in the dorsal Anterior Cingulate Cortex (dACC, x,y,z = 18, 27 48) regardless of blocks (i.e. blocks 1-3 

averaged together) (Fig. 4.D and Table S5). Finally, the prediction error at the time of the feedback in the Predict 

trials, correlated with the bilateral ventral striatum (x,y,z = -12,3,-12; Fig. S3 and Table S6). 
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Discussion 

Individuals possess only a limited understanding of others' opinions, intentions and preferences. Yet, 

social influence hinges on the ability to infer others' likely actions. Our findings indicate that when we observe 

others’ cheating behavior, our brain monitors their inclinations toward dishonesty, not by shaping our own moral 

preferences, but by biasing our assessment of the value of cheating (valuation bias). Moreover, this valuation 

bias is dynamic. It reflects progressive learning about the moral inclinations of others. At the brain system level, 

participants who are anti-conformists (conformists) tend to show higher (lower) left lPFC activity with this 

valuation bias when observing dishonest behavior. Moreover, others’ dishonesty level is encoded in the TPJ-

pSTS when participants predict their behavior. These results provide a dynamic and mechanistic understanding 

of social influence in cheating, and demonstrate the interplay between social learning and social influence 

processes. 

At the behavioral level, participants changed their cheating behavior when they were exposed to the 

Dishonest Group, but not the Honest Group. This asymmetry in social influence could be driven by the difference 

in learning accuracy between the Dishonest and Honest groups. However, this interpretation is ruled out by the 

fact that participants discriminated the levels of dishonesty between the two groups. Moreover, the conformity 

parameter of the Dynamic Bias computational model was significantly higher when participants observed the 

behavior of the Dishonest Group than the Honest Group. This result echoes with previous research showing 

that anti-social behaviors such as cheating are more contagious than prosocial behavior or honesty (11, 30, 31). 

In addition, social proximity exacerbates this asymmetry (11) and can improve social learning (36). In our 

experiment, group members were anonymous. Thus, the asymmetry of influence cannot be explained by 

different levels of social proximity between the participants and others.  

Two main mechanisms of social influence have been proposed: an adjustment in individuals’ preferences 

(8, 12, 37) or a valuation bias in individuals’ valuation process (3, 4). Previous work proposed that these two 

mechanisms are dependent on the accessibility of social information. Precisely, when individuals have a full 

access to others’ behavior or beliefs, the preference shifting mechanism would be more prevalent (38). Here, 

we show that a dynamic valuation bias better describes the mechanism of social influence when others’ behavior 

is fully accessible and accurately learned. Our model assumes that participants infer the preferences of others 

over time (social learning component). This internal representation then biases the valuation process of 

participants when they face the opportunity to cheat (social influence component). Such a process is in line with 

the proposal that social influence does not consist of blindly following others, nor of changing one’s preferences 

or the valuation process, but is rather the building of a causal understanding of others’ behavior, which then 

influences the decision process (28, 39, 40).  

One original aspect of our experimental design is the way participants were gradually exposed to others’ 

behavior. Past experiments either presented others’ choices in a block of trials or did not consider the learning 

dynamics (4, 8). It should be noted that participants learned quickly, as they were able to accurately predict 

others’ behavior after approximately 10 trials. Despite this limitation, our dynamic model of social influence was 

able to explain participants behavior better, demonstrating that ‘fixed’ models are not the most representative of 

the process of social influence. One natural extension of our work would be to test a more volatile or uncertain 

social environment as this would induce a slower learning pace (41).  

Our results elucidate the neurocomputational mechanisms of social influence. When exposed to a 

dishonest group, we observed differences in the dynamic valuation bias in the left lPFC, depending upon 

individual levels of conformity. That is, higher lPFC valuation bias activity was observed in participants who were 

more anti-conformist (i.e., resistant to the observed norm of cheating). This effect at the brain system level 

parallels the fact that the larger the valuation bias, the more likely participants were to cheat. Our observation of 

the dynamic tracking of the valuation bias by the dlPFC extends previous reports that the lPFC encodes the 

view of others about a choice, moral or not (8, 16). Furthermore, lPFC is known to be involved in norm 

compliance (21, 42). These previous results were obtained when the social norm was known from the beginning 

(i.e., not learned), unlike in our experiment. Here, we additionally show that the lPFC tracks the evolution of the 

social norm (i.e., the behavior of the others) depending on the participants’ degree of compliance. This shows 
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that the lPFC tracks the social environment in a dynamic fashion and is responsible of the integration of social 

information into the decision valuation process.  

In our Bayesian preferences learning model, based on the model developed by (35), individuals start with 

priors about the preferences of the others, which are then used to predict their likelihood to cheat. A prediction 

error updates those priors and corresponds to the difference between the predicated likelihood to cheat and the 

other’s actual behavior. During the feedback phase, this prediction error was encoded in the bilateral ventral 

striatum. This region has been demonstrated to encode prediction errors related to social norms, a process 

required for learning about the behavior of other individuals (43, 44). When investigating brain areas encoding 

the belief about the level of dishonesty of the group members, the bilateral pSTS and TPJ tracks one’s belief 

about the probability that a group member will cheat, when the participant is predicting her choice (both in the 

Dishonest and Honest Group conditions). Thus, the pSTS-TPJ computes a signal required for learning and 

predicting others’ behavioral tendencies. This is in line with previous work showing involvement of this brain 

region in simulating others’ learning or supporting the representation of others’ preferences (25, 45). 

Furthermore, we observed no implication of the pSTS-TPJ in the social influence process itself, as this was 

carried by the lPFC (i.e., which encoded the dynamic valuation bias). In contrast, most previous reports that the 

pSTS-TPJ is involved in the decision process, are based on experiments in which social information is directly 

useful for the participants to make a choice. This has been shown when choosing to cooperate (46), when 

achieving a consensus (25) or when revising one’s choice (47). In the current study, participants did not directly 

need social information to decide whether to cheat or not but could be influenced by what they learned about 

others’ behavior. Consistent with this, previous work on social influence did not observe engagement of the 

pSTS-TPJ when social learning is not involved (4, 8).  

Overall, our neuroimaging results demonstrate that the pSTS-TPJ and dlPFC compute two separate 

signals: a social learning signal in the pSTS-TPJ and a social influence signal in the lPFC. Our study elucidates 

the dynamic link between social learning and social influence in the context of cheating behavior. Our 

computational model explains how individuals generate a formal representation of others’ preferences which 

then biases their valuation process. The representation of others’ behavioral tendencies was encoded in the 

rTPJ-pSTS region during learning while the dynamic bias engages the left lPFC. Our findings have implications 

for developing new computational theories of social influence that could be useful in many different contexts. 

For example, a recent fMRI study reported that cognitive processes underlying social understanding were more 

aligned after natural consensus-building conversation (48). Much research on social influence has focused on 

public compliance, setting aside the long-lasting effects of social interaction on private cognition (49, 50). In fact, 

consensus-building conversation not only align neural responses within groups (reflecting social compliance), 

but this alignment can generalize to novel stimuli that were not discussed (48). This emphasizes an important 

role of private acceptance (an effect explained here by the valuation bias) in understanding social influence. 

 

Methods 

This study was approved by the local ethics committee (CPP Sud-Est 2, 2018-36). We provide a detailed 

description of the experimental procedures in SI Methods. In Solo trials, participants observed the outcome of 

die throw and had to report the result (Fig 2.A). They could either report the correct outcome or could cheat by 

reporting an incorrect outcome. Each option was associated with a payoff and cheating was always more 

rewarded than reporting honestly. In Predict trials, participants also observed the outcome of a die roll and were 

presented with two options, a, accurate and an inaccurate one (Fig. 2.A). However, they had to predict the option 

reported by another individual randomly selected from a group of 10 who performed the Solo trials in a previous 

experimental session. Unbeknownst to the participant, the group members were simulated. One group was 

dishonest and another was honest. The experiment was organized in three blocks (Fig. 2.B). A first block, the 

Baseline, was composed by 50 Solo trials. The purpose was to assess the initial preferences of the participants. 

The second and third blocks consisted of 50 Solo trials and 50 Predict trials that were interleaved starting with 

a Predict trial. Thus, participants were gradually exposed to others’ cheating behavior. The difference between 

these two blocks was the cheating behavior of the presented group (either dishonest or honest). The order of 

presentation of the dishonest and honest group was randomized between participants. 
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Figures 

 
Figure 1: Graphical representation of the different computational models accounting for social influence. 
This figure represents the 4 different mechanisms of social influence that we considered. We varied whether social 
influence is due to a shift in one’s preferences (top line of the table) or is due to a bias in the valuation process 
(bottom line). We then vary whether the process is fixed (left column) or dynamic (right column) because it depends 
on one’s learning about the behavior of others over time (schematically represented by the top figure, right column). 
For each model a formal description is provided based on a utility function (Ucheat) representing the relative value 
of cheating for the individual, with two free parameters α and δ. α represents the individuals sensitivity to monetary 
reward whereas δ represents her moral cost faced when cheating.  
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Figure 2: Experimental design and behavioral results. A. The experiment consisted of 2 types of trials. In the 
Solo trials participants had to report the outcome of a die draw among two choices. An honest report was always 
less rewarded than a dishonest one making cheating the more profitable choice. The earnings associated with 
each choice varied between trials and ranged from €0 to €8 (€2 to €10) by steps of €2 for the honest (dishonest) 
choice. The Solo trials ended with a confirmation step in which the participants’ screen froze without confirmation 
of her choice to reinforce the feeling that decision was anonymous. In the Predict trials, participants had to predict 
whether another individual, randomly selected from group of 10, cheated or reported honestly. Then, the 
participants’ response was highlighted in red during a jittered confirmation step. Finally, participants received 
feedback about their prediction. The correct response was highlighted in green. B. Our experiment was divided in 
3 blocks. The first one, the Baseline, consisted of 50 Solo trials and allowed us to assess the participants’ 
preferences. The two following blocks were a mixture of 50 Predict and 50 Solo trials that were interleaved. This 
structure allowed us to expose participants to the others’ behavior and to assess the effect on participants’ 
decisions. In each of these two blocks, participants’ predictions concerned either an honest or a dishonest group 
of participants. The order of presentation of the Honest and Dishonest Groups was randomized between 
participants as either the second or third blocks. C. The mean proportion of cheating in the Dishonest Group 
condition was significantly higher than in the two other conditions. The statistical analysis comes from a pairwise 
comparison with Bonferroni correction extracted from a mixed-effect logistic regression (see model 1 in Table S2 
for details). D. Mean prediction accuracy in both the Dishonest Group and the Honest Group conditions. The black 
line indicates chance level. Stars within bars indicate the results of a one-sided signed rank test comparing the 
prediction accuracy with the chance level. The other statistical analysis comes from a mixed-effect logistic 
regression (see model 2 in Table S2 for details). E. The mean of predictions that the other cheated over Predict 
trials for the both the Dishonest and Honest Group conditions. The red (blue) dashed line corresponds to the mean 
proportion of cheating of the Dishonest (Honest) group members. In all figures, bars or shaded areas corresponds 
to standard errors. *** p < 0.001, ** p < 0.01, * p < 0.05. 
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Figure 3: Model selection and estimation. A. Protected Exceedance Probability (pEP) of the different 
candidate models. The higher the pEP, the more likely a given model explained the group’s behavior more 
than the others. PS: Preferences shift; VB: Valuation Bias. B. Difference between the value of the conformity 

parameter 𝛾 in the Dishonest Group condition and the Honest Group condition for each participant. The stars 
represent the result of a two-sided rank sum test between the two conditions. C. Mean inferred probability 
that others cheated over Predict trials for the Dishonest Group condition (red) and the Honest Group 
condition (blue). Shaded areas are standard errors. The red (blue) dashed line corresponds to the mean 
proportion of cheating of the Dishonest (Honest) group members. *** p < 0.001. 
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Figure 4: Neuroimaging results. A. Negative relationship between the BOLD signal in the left lateral prefrontal 

cortex (lPFC) and the dynamic valuation bias signal (i.e., the learned probability that the other cheats) with 

participants’ conformity parameter γ at the decision stage of the Solo trials of the Dishonest Group condition (p < 

0.001 uncorrected and p < 0.05 whole-brain cluster-corrected family-wise error (FWE)). B. Individuals betas extracted 

from 6mm sphere centered on peak activity in the lPFC are negatively correlated with the participants’ conformity 

parameter γ in the Dishonest Group condition. For negative value of γ, participants show anti-conformism and the 

correlation between the Betas and the probability of cheating is positive. For positive γ value, that express conformity, 

the correlation is negative or null. In the Honest Group condition, this relationship is not significant. C. BOLD signal 

in the bilateral posterior superior temporal sulcus (pSTS) and the temporo-parietal junction (TPJ) correlates with the 

participants’ inference about others’ cheating probability for both group conditions at the prediction stage of the 

Predict trials (p < 0.001 uncorrected and p < 0.05 whole-brain cluster-corrected family-wise error (FWE)). D. BOLD 

signal in the dorsal anterior cingulate cortex (dACC) correlates negatively with the relative value of the participants’ 
(DV(Chosen) – DV(Unchosen)) in the Solo trials in the whole experiment (p < 0.001 uncorrected and p < 0.05 whole-

brain cluster-corrected family-wise error (FWE)). 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 21, 2024. ; https://doi.org/10.1101/2024.05.21.594859doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.21.594859
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

Supplementary Information 

Methods SI 

Participants 

32 healthy participants were recruited via the recruitment Facebook page of the Institute of Cognitive Sciences. 

Exclusion criteria included a history of systemic or neurological disorders, psychiatric disorders, psychoactive 

medication or drug use, pregnancy, involvement in psychology classes, and previous participation in studies 

involving decision-making in general. We recruited only right-handed participants. One participant was excluded 

from any analysis because they cheated in all the trials and reported that they did not believe the scenario, 

leaving 31 participants (14 males, mean age: 22.87 years, s.d. 0.58). For the model estimation and the fMRI 

results three additional participants were excluded because they never cheated in the Baseline condition. Thus, 

these analyses are made on 28 participants. 

 

Experimental design 

The task was based on a cheating game in which participants observed the outcome of a 6-sided die throw and 

had to report the result on a subsequent screen. Participants could either report the correct outcome (be honest) 

or could cheat by reporting a dishonest option. Each choice was associated with a payoff. To create a conflict 

between honesty and maximizing earnings, cheating was always the more profitable choice. Participants in our 

task performed a variation of this cheating game, in which we introduced two types of trials, the Solo trials and 

the Predict trials (Fig. 2.A and B). 

 

Solo trials. In these trials, participants played the cheating game described above. After a jittered inter-trial 

interval (ITI, 3-7 s), the outcome of the 6-sided dice roll was presented for 1 s, then participants had an unlimited 

time to choose which outcome to report, the left or the right one. The choice was made by pressing a button box 

with their right hand (either the right or the left button). The honest and dishonest choice sides were randomly 

determined for each trial. After the button press the screen froze for 0.5 s. The task involved no cue to confirm 

the decision, in order to maximize the participants’ perception of unaccountability (17). 

 

Predict trials. Predict trials commenced in a similar fashion to Solo trials because participants observed the 

outcome of die roll and were presented with two options, an accurate and an inaccurate one. However, 

participants were told they had to predict the result another individual reported in a previous experimental 

session. This other individual was said to be randomly selected from a group of 10 participants who performed 

the Solo trials in a previous experimental session. After indicating their prediction (left or right button press, 

depending on the predicted outcome), the predicted outcome was framed in red for a randomized duration (2-

5s). Then, participants received feedback during which the “real” outcome reported by the other was framed in 

green. If this frame was overlayed with the participants’ prediction, their prediction was correct, otherwise it was 

incorrect. A correct prediction was rewarded with €2 and €0 otherwise. 

 

Groups simulations. Unbeknownst to the participant, the group of 10 individuals were simulated. Specifically, 

we simulated two groups composed either of honest or dishonest individuals. We chose to tell to participants 

that they had to predict the decisions made by a group of individuals who performed the task in a previous 

experimental session to increase the likelihood of conformism towards the others’ behavior (51). To maintain 

the behavior of the “group members” homogeneous within each group, we actually constructed a dataset based 

on the responses of two participants that performed the online pilot of the task. Specifically, we selected them 

based on the congruence of their behavior (no erratic behavior) and their cheating level. One cheated in 85% 

and the other in 20% of the Solo trials in the Baseline test. We then determined which ut ility functions best 

explained the pilot participants’ behavior, which was the variable cost of cheating utility function (see the section 
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Utility functions for details). We then used the estimated parameters to simulate the cheating behavior of the 

group members in each Predict trial. One of the groups was based on the dishonest participant’s parameters 

and the other on the honest participant’s parameters. This procedure ensured a high level of credibility as the 

decisions were simulated from the true behavior of two participants. Furthermore, using a simulation allows us 

to add noise to the data to decrease the pace of learning by our participants. This gave us two sets of Predict 

trials, one in which “others” were cheating in 22% of the trials (Honest group), the other in which the “others” 

cheated in 88% of the trials (Dishonest group, see Table S.1). 

 

Task sequence (Fig. 2.B). The experiment was divided into three blocks and was inspired by a previous 

experiment on social influence affecting risky choices (8). The first block, the Baseline, was composed by 50 

Solo trials. The purpose of this block was to assess the initial preferences of the participants. The second and 

third blocks consisted of 50 Solo trials and 50 Predict trials that were interleaved starting with a Predict trial. The 

fact that participants were gradually exposed to the others’ (dis)honest behavior allowed us to test the potential 

link between learning about others’ behavior and the participants’ decisions to cheat. The difference between 

these two blocks was the cheating behavior of the group whose decisions the participants had to predict. One 

group was considered as dishonest (Dishonest Group condition, 88% cheating frequency) while the other was 

considered as honest (Honest Group condition, 22% cheating frequency). The order of presentation of the 

second and third blocks was randomized between participants. To prevent participants from simple imitative 

behavior, as they could simply repeat the behavior from the previous Predict trials, the parameters (payoffs and 

dice scores) of any Predict trial were never the same as the next three Solo trials. 

 

Parametrization. The die values ranged from 1 to 6 and the payoffs ranged from €2 to €10 with €2 increments. 

Both the dice values and the payoffs were randomly selected with two constraints. First, we aimed to control for 

any correlation between the dice values and the payoffs. Consequently, specific dice values were not associated 

with fixed payoffs. Second, we aimed to have the same number of observations per value of relative earnings 

(difference between the payoff of the dishonest choice and the honest one). Based on the possible payoffs, 5 

levels of relative earnings were possible, €2, €4, €6, €8 or €10. We randomly selected 5 payoff combinations 

(payoffs for the honest and dishonest reports) for each level of relative earnings, leading to a set of 25 trials 

(each with 2 die values and 2 payoffs). We then repeated this set twice for each block of the experiment, leading 

to a total of 50 trials whose order of presentation was randomized between participants. 

 

Procedure 

The study took place at the Neuroimaging Center CERMEP (https://www.cermep.fr/cermep_en.php) and was 

approved by the local ethics committee (CPP Sud-Est 2, 2018-36). During the medical screening, participants 

provided informed consent. Before entering the fMRI scanner, participants were asked to read privately the 

instructions of the task. A questionnaire was added at the end of the instructions to ensure they understood the 

task fully, and especially the fact that their decisions directly affected their final payment. We also made sure 

that participants were aware of the true anonymity of their decisions during the task. After the completion of the 

task, participants completed a debriefing questionnaire. They had to state on a 5-point Likert scale (5 =” I 

completely believe it”, 1 =” I completely disbelieve it”) whether they believed that their decisions were kept 

confidential (mean = 4.42 ± 0.99), whether they believed their decision were scrutinized (mean = 3.39 ± 1.41) 

and whether they believed the others individuals were real (mean = 4.03 ± 1.02). These results confirmed that 

participants trusted that their decisions were confidential and that they believed that the group of others existed. 

To avoid a spillover effect on the cheating behavior in the task we also asked participants, at the end of the task, 

whether they thought it was immoral to cheat at the beginning of the task and at the end. The goal was to assess 

if the exposure to others’ dishonest behavior led to a change in their moral perception of cheating in our task. 

Ten participants reported, both for the beginning and end of the task, that it was never immoral to cheat, ten 

reported that it was immoral at the beginning of the task but not immoral at the end, seven reported that it was 
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immoral, both for the beginning and end of the task, three reported that they had no opinion, at the beginning of 

task, but thought that it was not immoral at the end of the task. Finally, one participant had no opinion both at 

the beginning and the end of the task. Finally, we asked them if they had any comments or remarks about the 

task. 

 

Statistical analysis 

Behavioral analysis 

Our behavioral statistical results are derived from mixed-effect logistic regressions. We always report the 

marginal effect rather than the odd ratios as it is easier to read and understand. The marginal effect can be 

interpreted as the mean discreet change of the dependent variable given a unitary change of an independent 

variable. In all regressions we considered standard errors clustered at the participants’ level as well as a random-

effect at the participant level. When reporting pairwise comparisons of marginal effects we always controlled for 

multiple comparisons using a Bonferroni correction. Other statistical tests are always two-sided nonparametric 

tests unless specifically indicated otherwise. 

 

Utility functions 

Our different models are based on a core utility function derived from previous work in behavioral economics 

(33, 34). These models assume that agents compute a relative decision value of cheating by solving a cost-

benefit arbitration between the relative gains of cheating and its moral cost (∆𝐷𝑉 (𝑐ℎ𝑒𝑎𝑡)). Formally, the relative 

gains of cheating are weighted by a free parameter α representing the agent’s preference for money. The moral 

cost of cheating is a free parameter δ which is fixed (Fixed cost utility, see Eq. 1). We also considered an 

alternative utility function in which the cost of cheating weights the payoff of cheating (24)) (Variable cost utility, 

see Eq. 2). 

 

∆𝐷𝑉 (𝑐ℎ𝑒𝑎𝑡)  =  𝛼(𝜋𝐶ℎ𝑒𝑎𝑡 − 𝜋𝐻𝑜𝑛𝑒𝑠𝑡 )  +  𝛿 (1) 

∆𝐷𝑉 (𝑐ℎ𝑒𝑎𝑡)  =  𝛼(𝜋𝐶ℎ𝑒𝑎𝑡 − 𝜋𝐻𝑜𝑛𝑒𝑠𝑡 )  +  𝛿𝜋𝐶ℎ𝑒𝑎𝑡  (2) 

Learning models 

To capture the computational processes underlying learning about others’ cheating behavior, we considered a 

family of 6 Bayesian learning models. All of them are based on the Bayesian Preferences Learning model (BPL) 

(35). In these models, participants infer others’ preferences from others’ observed choices. Formally, others’ 

preferences correspond to their own parameters α and δ for their utility function with this set defined as 𝛩(𝑜). 

This allows us to compute a relative decision value based on Eq. 1 or Eq. 2 which is then transformed to a 

probability using a softmax function with a temperature parameter β that is treated as a free parameter. 

Participants are assumed to start with prior beliefs about the others’ parameters 𝑝(Θ(𝑜)) = 𝑁(𝜇0
(𝑜)

, 𝜎0
(𝑜)

) which 

are Gaussian with mean 𝜇0
(𝑜)

and variance 𝜎0
(𝑜)

. Given the others’ choices, the participants estimate and update 

the set of parameters 𝛩(𝑜) using the following Bayes-optimal probabilistic scheme: 

 

𝑝(𝛩(𝑜)|𝑎𝑡)  ∝  𝑝(𝑎𝑡|𝛩(𝑜))𝑝(𝛩(𝑜)|𝑎𝑡−1)   (3) 

Where 𝑝(𝛩(𝑜)|𝑎𝑡) is the participant’s posterior belief about the other’s preference at the end of trial t and the 

right part of the equation represents the Bayesian belief update rule. Following (35), we used a variational-
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Laplace scheme to implement this model which yields 𝑝(Θ(𝑜)|𝑎𝑡) ≈ 𝑁(𝜇0
(𝑜)

, 𝜎0
(𝑜)

). For more details about the 

formal mathematical description, we refer the interested reader to the original paper (35). As the BPL model 

assumes that participants start with priors about the others’ preferences, we considered 3 types of priors. In a 

first model, µ𝛼  and µ𝛿  were equal to the value of α and δ of the participant’s own utility function, estimated in the 

Baseline (BPL-Self). According to this model, participants are assumed to consider the group members as 

individuals with preferences similar to their own (self-projection). In a second model, we set the priors as in the 

previous case, but only for the first group they faced (Dishonest or Honest group conditions). For the second 

group, µ𝛼   and µ𝛿   were equal to µ𝛼  and µ𝛿   learned at the last Predict trial of the first group they faced (BPL-

Others). Here, participants are supposedly projecting the learned preferences of the first group onto the second 

one. In a third and last model, the setting was not changed for the first group, but only for the second, µ𝛼  and µ𝛿  

were the weighted means of the participant’s parameter values (as in the BPL-Self) and of the value learned for 

the previous group (BPL-SelfOthers). This weight is a free parameter 𝜔. 

Finally, we considered either one of the two utility functions to be the one used by our participants to infer the 

others’ preferences. In total, we tested the 3 different types of prior for each utility function (see Eq. 1 and Eq. 

2) leaving us with 6 candidate models. 

Social influence models 

Our computational models to account for social influence are built on two potential mechanisms. The first one, 

the Preferences Shift (PS), assumes that participants’ preferences change when they are exposed to others’ 

cheating behavior (8, 12). The second one, the Valuation Bias (VB), assumes that participants’ decision values 

change, while their preferences remain constant, when they are exposed to others’ cheating behavior (3, 4, 18). 

We derived formal computational models from these two mechanisms. For the Fixed Preferences Shift (PS 

Fixed) model this is formally defined as follows: 

 

∆𝐷𝑉 (𝑐ℎ𝑒𝑎𝑡)𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑑  =  𝛼(𝐵, 𝐷, 𝐻)(𝜋𝐶ℎ𝑒𝑎𝑡 − 𝜋𝐻𝑜𝑛𝑒𝑠𝑡 )  +  𝛿(𝐵, 𝐷, 𝐻) (4) 

In this equation (Eq. 4), the participants’ preferences α and δ take different values for each condition (Baseline, 

Dishonest and Honest Groups: B,D,H). For the Fixed Valuation Bias (VB Fixed) mechanism this is formally 

defined as follows, 

∆𝐷𝑉 (𝑐ℎ𝑒𝑎𝑡)𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑑  =  𝛼(𝜋𝐶ℎ𝑒𝑎𝑡 − 𝜋𝐻𝑜𝑛𝑒𝑠𝑡 )  +  𝛿 +  𝜃(𝐷,𝐻) (5) 

In this equation (Eq. 5), the participants’ preferences are held fixed throughout the task. A parameter θ 

represents the bias of the participants’ decision values due to the exposition to others’ cheating behavior. This 

parameter is different for the Dishonest Group (θ𝐷) and for the Honest Group (θ𝐻). 

In addition to these two models, we also considered dynamic variants that imply that the preferences change or 

the value biases are affected by the participants’ knowledge of the others’ cheating behavior. The main idea is 

that, over observations of others’ behavior, our participants learn about the preferences of others’. Over the 

course of this learning, either the changes in our participants’ preferences or the valuation bias evolved as a 

result of their observations. Formally, we tested 2 different models that link the outcome of the BPL model with 

either the PS (Eq. 4) or the VB model (Eq. 5). 
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In the first model, we considered that the changes of preferences are the results of a weighted average of the 

participants’ own preferences and what they know at a given point in time about the others’ preferences. 

Formally, the Dynamic Preference Shift (PS Dynamic) model is defined as follows, 

∆𝐷𝑉 (𝑐ℎ𝑒𝑎𝑡)𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑑  =  (𝜔𝐴𝛼 +  (1 −  𝜔𝐴 )𝛼𝑡
𝑜)(𝜋𝐶ℎ𝑒𝑎𝑡 − 𝜋𝐻𝑜𝑛𝑒𝑠𝑡 ) + (𝜔𝐷𝛿 +  (1 −  𝜔𝐷)𝛿𝑡

𝑜) (6) 

where 𝛼𝑡
𝑜  and 𝛿𝑡

𝑜  are the others’ preferences derived from the BPL model at time t, 𝜔𝐴  (𝜔𝐷 ) being free 

parameters representing the magnitude of social influence. The closer from 0 these parameters are, the more 

participants will be influenced by their perception of the others’ preferences, i.e., the more they will be susceptible 

to social influence (with 0 ≤ 𝜔𝐴(𝜔𝐷) ≤ 1). Formally, they control the weight that participants put on their own 

preference parameter α (δ) and 1 − 𝜔𝐴  (1 − 𝜔𝐷 ) is the weight that participants put on others’ learned preferences 

αt
O (δt

O). Both 𝜔𝐴  and 𝜔𝐷  were estimated separately for the Dishonest and Honest Group conditions. 

In the second model, we considered that the value bias is derived from what participants have learned about 

others’ preferences at a given point in time Formally, the Dynamic Valuation Bias (VB Dynamic) model is defined 

as follows, 

∆𝐷𝑉 (𝑐ℎ𝑒𝑎𝑡)𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑑  =  𝛼(𝜋𝐶ℎ𝑒𝑎𝑡 − 𝜋𝐻𝑜𝑛𝑒𝑠𝑡 )   +  𝛿 +  𝛾𝑃(𝐶ℎ𝑒𝑎𝑡/𝐻𝑜𝑛𝑒𝑠𝑡)𝑡
𝑜      (7) 

𝑃(𝐶ℎ𝑒𝑎𝑡) = 𝛼𝑡
𝑜(𝜋𝐶ℎ𝑒𝑎𝑡 − 𝜋𝐻𝑜𝑛𝑒𝑠𝑡 ) + 𝛿𝑡

𝑜 and  

𝑃(𝐻𝑜𝑛𝑒𝑠𝑡) = 1 − 𝑃(𝐶ℎ𝑒𝑎𝑡)  (8) 

where 𝑃(𝐶ℎ𝑒𝑎𝑡/𝐻𝑜𝑛𝑒𝑠𝑡)𝑡
𝑂

 being the dynamic valuation bias. It corresponds to the probability that others’ cheated 

(were honest) in the participant’s position. It is based on what participants learned about others’ preferences 

(𝛼𝑡
𝑜 𝑎𝑛𝑑 𝛿𝑡

𝑜) at time t in each of the two group conditions and on the relative payoff of the given Solo trials. γ is a 

free parameter representing the extent of the participants’ conformity. This last parameter is estimated 

separately for the Dishonest Group and the Honest Group conditions. 

Overall, we tested 4 model candidates to account for social influence in our experiment. Participants were 

assumed to use the Fixed Moral cost utility function to compute their decision value as it is the utility function 

that best explained our participants’ behavior throughout the experiment (see Fig. S1.A and the Results section 

for details). 

Model selection 

The Bayesian Model Selection (BMS) was performed using the VBA toolbox (Variational Bayesian Analysis) in 

a random effect analysis relying on the free energy as the lower bound of model evidence. We use protected 

Exceedance Probability measurements (pEP) to select the model used most frequently in our population of 

participants (32). 

fMRI acquisition and preprocessing 

MRI acquisitions were performed on a 3 Tesla scanner using EPI BOLD sequences and T1 sequences at high 

resolution. Scans were performed in a Siemens Magnetom Prisma scanner HealthCare at CERMEP Bron 

(single-shot EPI, TR / TE = 1600/30, flip angle 75, multiband acquisition (accelerator factor of 2), in an ascending 

interleaved manner with slices interlaced 2.40 mm thickness, FOV = 210 mm. We also used the iPAT mode with 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 21, 2024. ; https://doi.org/10.1101/2024.05.21.594859doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.21.594859
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

an accelerator factor of 2 and the GRAPPA method reconstruction. The number of volumes acquired varied 

given the time the participant took to make their decisions. The first acquisition was made after stabilization of 

the signal (3 TR). Whole-brain high-resolution T1-weighted structural scans (0.8 x 0.8 x 0.8 mm) were acquired 

for each subject, co-registered with their mean EPI images and averaged across subjects to permit anatomical 

localization of functional activations at the group level. Field map scans were acquired to obtain magnetization 

values that were used to correct for field inhomogeneity. 

 

fMRI data analysis 

Image analysis was performed using SPM12 (Wellcome Department of Imaging Neuroscience, Institute of 

Neurology, London, UK, fil.ion.ucl.ac.uk/spm/software/spm12/). Time-series images were registered in a 3D 

space to minimize any effect that could result from participant head-motion. Once DICOMs were imported, 

functional scans were realigned to the first volume, corrected for slice timing and unwarped to correct for 

geometric distortions. Inhomogeneous distortions-related correction maps were created using the phase of non-

EPI gradient echo images measured at two echo times (5.20 ms for the first echo and 7.66 ms for the second). 

Finally, in order to perform group and individual comparisons, they were co-registered with structural maps and 

spatially normalized into the standard Montreal Neurological Institute (MNI) atlas space using the DARTEL 

method. 

 

We ran general linear models (GLMs) analysis to identify which brain regions encoded: (1) the dynamic valuation 

bias in both the Dishonest and Honest Group conditions (choice stage in the Solo trials); (2) the learned 

probability that the others cheated, in the Predict trials in both the Dishonest and Honest group conditions 

(prediction stage in the Predict trials); (3) the relative value of participants’ chosen options in Solo trials, 

regardless of conditions. We also included a fourth signal, the prediction error at the feedback stage of the 

Predict trials. In every GLM an event was defined as a boxcar function whose duration was equal to the 

participant’s reaction time or to the time of display with the exception of the button press which was defined as 

a stick function. Events such as the stimulus stage, the choice and prediction stages for both Solo and Predict 

trials as well as the feedback stage in the Predict trials were always included in all of our GLMs. Head movement 

parameters were added as parametric regressors of no interest to account for motion related noise. Finally, to 

control for diverse task parameters, we added as parametric regressors in every GLMs for the choice and 

prediction onsets: the choice or prediction of the participant (0: No cheat, 1: cheat), the participants’ reaction 

time, and which side was pressed in the choice or prediction stage of the Solo and Predict trials, respectively. 

Based on these common features we defined 2 GLMs. 

 

In GLM1, we added the following parametric regressors: the inferred others’ probability to cheat (be honest) in 

the choice stage of the Solo trials of the Dishonest (Honest) group condition (dynamic valuation bias, signal 1), 

as well as the relative value of cheating derived only from participants’ preferences also at the choice stage of 

the Solo trials but in every condition. This last parametric regressor represents the unbiased participants’ relative 

valuation of cheating. In GLM2, we added the following parametric regressors: the learned probability that the 

others’ cheated at the prediction stage of Predict trials in both the Dishonest and Honest Group conditions (signal 

2). In the choice stage of the Solo trials, we added the relative value of the participants’ choice in every condition 

(signal 3). Then, in the feedback stage of the Predict trials we added the prediction error from the BPL-Self 

model in both the Dishonest and Honest Group conditions. Finally, in both GLMs, we added the participants’ 

conformity parameters γ as a second-level covariate, for the Dishonest and Honest Group conditions. 

We computed one sample t-tests with contrasts for main effect for each parametric regressor as well as the main 

effect per block (Baseline, Dishonest and Honest groups) when possible. Reported brain areas show a 

significant activity at the threshold of p < 0.05, whole brain family-wise error (FWE), corrected for multiple 

comparisons at the cluster level (threshold at p < 0.001 uncorrected). 
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Figures 

Figure S1: Utility function and social learning model selection. A. Protected Exceedance Probability (pEP) of the 

different utility functions associated with cheating, estimated over the three blocks of the experiment. The higher the 

pEP the more likely a given model explains the group’s behavior more than the others. The fixed cost only utility function 

assumes that participants are bearing a fixed moral cost when choosing to cheat while the variable cost variant assumes 

that this moral cost depends on the cheating payoff. The mixed variants are all the possible combinations of these two 

utility functions across the three blocks of the experiment (baseline and groups conditions). B. Protected Exceedance 

Probability (pEP) of the different social learning models. The higher the pEP the more likely a given model explains the 

group’s behavior more than the others. We tested a total of 8 models all based on the Bayesian Preference Learning 

model (BPL) for which we varied the priors concerning the others’ parameters (Self, Others or SelfOthers) and whether 

the utility function the participants used to learn about the others’ cheating behavior was the fixed cost or the variable 

cost utility function.  
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Figure S2: Model selection and estimation. A. Mean values of the participants’ social influence model parameters 

(left side) and the learned temperature for the Dishonest Group and Honest Group condition (right side). Statistical tests 

for the influence model parameters correspond to one-sided signed rank tests against 0 and for the learned temperature 

it corresponds to two-sided rank-sum tests comparing the values between the Dishonest and Honest group blocks (in 

dark and light blue, respectively). Bars correspond to standard errors. B-C. Probability density function of the learned 

parameters α (B) and δ (C) for both the Dishonest and Honest Group conditions. Stars correspond to the p-values of a 

two-sided rank-sum test comparing the mode of distribution between the two conditions. D. The participants’ moral cost 

parameter 𝛿 is not correlated with the participants’ conformity parameter 𝛾 in either the Dishonest or Honest Group 

conditions. The values 𝜌 are the correlation parameters obtained from a Pearson correlation (p=0.588 and p=0.116 for 

the Dishonest Group and Honest Group conditions, respectively).  E.  The participants’ average prediction accuracy is 

not correlated with the participants’ conformity parameter γ in either the Dishonest or Honest Group conditions. The 

values ρ are the correlation parameters obtained from a Pearson correlation (p=0.139 and p=0.431 for the Dishonest 

and Honest Group conditions, respectively).  *** p < 0.001. 
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Figure S3: A. Regions encoding the prediction error from the social learning model at the time of the 

feedback in the Predict trials. FWE clustered-corrected with p < 0.05. B. Mean prediction error over predict 

trials for the Dishonest Group condition (red), and Honest Group condition (blue). Shaded areas are 

standard errors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S1: Mean cheating frequency per level of relative pay for cheating for the two groups and model parameters used 

to simulate the groups’ behavior (Variable Moral cost utility function). 
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Relative pay €10 €8 €6 €4 €2 Mean 

Honest group 0.5 0.3 0 0 0.3 0.22 

Dishonest group 1 1 1 0.7 0.7 0.88 

       

Model Parameters α δ β 

Honest group 0.94 -0.94 2.27 

Dishonest group 1.22 -0.51 1.58 

 
 
Table S2: Logistic random-effect regressions. 
 (1) (2) (3) 

 Lying Prediction accuracy Prediction lying 

 (1: Cheat, 0: No 

cheat) 

(1: Correct pred., 0: Incorrect 

pred.) 

(1: Lie pred, 0: No lie pred) 

Disho. Grp. vs Baseline 0.148 *** - - 

 (0.037) - - 

Honest Grp. vs Baseline 0.047 - - 

 (0.025) - - 

Disho. Grp vs Hon. Grp. 0.101 * 0.179 *** 0.540 *** 

 (0.027) (0.022) (0.033) 

Honest Grp. first -0.067 -0.045 ** 0.034 

 (0.100) (0.018) (0.035) 

Trial number < 0.001 0.002 *** (< 0.001) 

 (< 0.001) (< 0.001) (< 0.001) 

Relative payoff cheating 0.049 *** 0.010 *** 0.049 *** 

 (0.006) (0.002) (0.004) 

Diff. dice value -0.013 ** < −0.001 -0.004 

 (0.004) (0.004) (0.004) 

Demographics Yes Yes Yes 

Number of observations 4650 3100 3100 

Number of clusters 31 31 31 

P > χ2 < 0.001 < 0.001 < 0.001 

Notes: Relative payoff for cheating: πCheat −πHonest, Diff. dice value: Dice valueCheat −Dice valueHonest. Standard errors 
clustered at the participant level are in parentheses. *** p<0.001, ** p<0.01, * p<0.05. 

 

 

 

 

 

 

 

 

Table S3: Brain regions encoding the Dynamic Valuation Bias in the Solo trials of the Dishonest Group condition 

modulated by the participants’ conformity parameter γ. 

MNI peak cluster coordinates: x y z k-cluster T value 

Negatively      

Left lPFC -39 27 9 152 5.32 
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Positively 
No Brain region 

     

Notes: cluster reported at p < 0.05 FWE whole brain cluster corrected (initial cluster-forming threshold of 

p < 0.001 uncorrected). 
 
 
Table S4: Brain regions encoding the participants’ inferred probability that the other cheated at the time of the prediction 
in the Predict trials. 

MNI peak cluster coordinates: x y z k-cluster T value 

Positively      

Right Superior Temporal sulcus 54 0 -9 1138 4.39 

Cerebellum 
30 -45 -33 197 4.76 

15 -66 -57 509 4.54 

Left motor cortex -36 -24 48 3618 6.81 

Cuneus 12 -78 24 184 4.97 

Negatively 
No Brain region 

     

Notes: cluster reported at p < 0.05 FWE whole brain cluster corrected (initial cluster-forming threshold of 
p < 0.001 uncorrected). 

 

 

Table S5: Brain regions encoding the relative value of the participants’ choice in the Solo trials. 

MNI peak cluster coordinates: x y z k-cluster T value 

Negatively      

dACC 18 27 48 212 4.12 

Positively 
No Brain region 

     

Notes: cluster reported at p < 0.05 FWE whole brain cluster corrected (initial cluster-forming threshold of 

p < 0.001 uncorrected). 

 

Table S6: Brain regions encoding the prediction error at the time of the feedback in the Predict trials. 

MNI peak cluster coordinates: x y z k-cluster T value 

Positively      

Ventral striatum -12 3 -12 177 5.93 

Left motor cortex -30 -18 51 207 3.68 

Negatively      

dACC 0 33 39 289 4.41 

Right angular 30 -54 42 210 4.37 

Notes: cluster reported at p < 0.05 FWE whole brain cluster corrected (initial cluster-forming threshold of 
p < 0.001 uncorrected). 
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