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CONTEXT GAIN-LOSS AND CONTEXT DEPENDENCY

Trust is fundamental to social interaction. It is defined as the willingness to be vulnerable to
another being on the basis of positive expectations of their intentions and behaviors (1).
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In repeated interactions, learning to trust others involves cognitive processes that integrate

uncertainty, context, and potential betrayal. | p e

A Rescorla-Wagner update rule
Different strategies can guide trust behavior. Some rely on heuristics (e.g., fixed rules or Eta indiv Alpha s Beta s PE, = outcome, — predicted pRecip(t)
triggers). Others use reinforcement learning, adjusting expected value through associative Normal Normal Normal

. . : N . . d.pRecip(t + 1) = d.pRecip(t) + n - PE
updates, or Bayesian belief updating, which integrates uncertainty into probabilistic inferences pred. pRecip( ) = pred.pRecip(t) + 1 t

about partners’ intentions (2, 3).
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. . - . We will examine links between model parameters and individual-difference measures.
a) In machine (a.1) and social (a.2) conditions, the proportion of amounts sent clustered around ~1 token

when reciprocity was below 25% and ~10 tokens when reciprocity exceeded 25%, consistent with utility All findings will be validated in a replication dataset.
maximization. A stripe around ~5 tokens, regardless of reciprocity, indicates non-maximizing behavior.
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